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When the upward flow of a fluid through a bed of particles of appropriate and 
almost uniform size is rapid enough so that the drag on each particle is as great as 
the particles buoyant weight, the particles do not remain close packed and the 
bed is said to be fluidized. Industrial uses of fluidized beds in the chemical and 
petroleum industries in particular are already extensive. Uses in the atomic- 
energy industry are being developed. 

In  this paper a mathematical model which describes the phenomena on 
a continuum basis is deduced. With this model we find that the system is unstable 
to small internal disturbances. Alternatively, we find that surface waves can be 
propagated (with attenuation) in the composite fluid and these waves for 
fluidized beds with a high ratio of solids density to fluid density are stable. These 
results are in agreement with experiment. Hot beds, where strongly exothermic 
reactions may be taking place, centrifugal beds (beds fluidized within a rotating 
system), and electromagnetic beds (those in which the particulate phase is 
electrically conducting) are all shown to be unstable to small internal dis- 
turbances. 

The equations derived here may also be used as approximate equations for 
dispersed particle two-phase flow. 

1. Introduction 
Fluidization is the process whereby a bed of particles which, in the laboratory, 

range in size from a few mm to about 10-3cm in diameter, is subjected to an 
upward flow of fluid through the bed a t  such a speed that the gravitational forces 
on the particles are balanced by the drag forces. As the fluid flow increases from 
zero the particles experience a drag which eventually becomes large enough to 
make them move. The particles will remain in contact as the flow increases, until 
the drag force equals the gravitational force. With increase in flow beyond this 
stage the particles move away from each other so as to keep the drag force equal 
to the gravitational force, resulting in some expansion of the bed. The bed in 
this state is said to be fluidized. At considerably higher fluid velocities the solids 
in the bed may be transported with the fluid. This latter phenomenon is some- 
times called pneumatic transport. 
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Widespread use of fluidized beds in industry has been accepted in the last 
20 years, particularly in the petroleum industry. For example, the catalytic 
cracking of petroleum vapour and the catalytic regeneration can be made con- 
tinuous by the use of fluidized beds. In  the atomic-energy industry potential 
uses include the calcination of waste fission products and heat exchangers in 
nuclear reactors. Ore roasting, the carbonization of coal, and the manufacture 
of fairly pure tungsten are all examples of successfully applied fluidization 
techniques. 

Although there is a very large literature on fluidization (general references 
are Botterill 1958, Franz 1962, Leva 1959, Zenz & Othmer 1960, the 1961 
Symposium on Fluidization and the 1962 Symposium on Fluid/Particle Inter- 
actions), it  appears that many of the fundamental principles are still not under- 
stood. For example, practically all gas fluidized beds are characterized by the 
appearance of bubbles of gas (or regions with practically no particles) moving up 
through the bed. The nature of their growth, shape and stability is not fully 
understood. Unlike an ordinary gas bubble in a liquid the fluid particles within 
the void do not remain there, but are continually changing. Such bubbles do not 
appear in most liquid fluidized beds. It appears empirically that bubbles will 
form in a fluidized bed if the ratio of the density of the solids to that of the fluid 
is greater than about 10. Most liquid fluidized beds have such a ratio less than 10. 
Water and lead shot is a borderline case and bubbles accordingly sometimes 
appear. When these bubbles reach the surface of the bed they generate surface 
waves, which from observations are damped very quickly. In  fact, they are 
damped very much quicker than ordinary waves on the surface of a liquid. In  
beds where bubbles do not appear, surface waves generated at the surface are 
also quickly damped. In  beds where the density of the two components are 
comparable this may or may not be the case. 

Symposia in 1961 and 1962 on fluidization indicated the necessity of a more 
fundamental approach to the subject, and most of the papers were directed 
towards this. 

A suitable system to study consists of non-porous spherical particles of equal 
size fluidized by air: particle diameters in the range 0.1-1mm are most con- 
venient. Glass ballotini or graded sand are good materials to use. For example, 
ballotini of 0-5 mm fluidizes at a superficial minimum velocity of approximately 
25cm/see; this velocity varies roughly as the square of the particle diameter. 
Liquid fluidized beds naturally require considerably smaller fluid velocities. For 
systems which are typical the Reynolds number, based on the particle diameter 
and the superficial fluid velocity, is of the order of 10. 

Several attempts have been made to set up equations for a fluidized or general 
two-phase system. 

Carrier & Cashwell (1956) considered the dynamics of a fluidized bed in the 
case of large solids-to-gas density ratio in which large temperatures are generated. 
Both internal and surface waves were considered and both were found to be 
unstable. They suggest that the dissipative mechanism which might result in 
attenuation of surface waves is due to a form of the bulk viscosity. As shown 
below, inclusion of this in the momentum equation is necessary but the apparent 
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(but incorrect) instability of the surface waves arose from the use of an inadequate 
treatment of the free-surface boundary conditions. In  this analysis, we derive 
conservation equations analogous to theirs but including certain further terms, 
and using an appropriate boundary condition, including both the bulk and shear 
viscosities, we find that surface waves are stable. 

Van Deemter & Van der Laan (1960) attempted to obtain momentum equa- 
tions for dispersed two-phase flow but only in a formal way. The nature of terms 
like the stress tensors and drag forces are not discussed. As they stand the 
equations are not of practical use. Compressibility effects are excluded. 

Hinze (1961) derived a set of equations for the momentum and energy balance 
of a flowing homogeneous suspension with slip between the two phases by con- 
sidering the effect of the particles as external forces acting on the continuous fluid 
phase. The stress tensor he suggested involves a composite velocity made up of 
the solids velocity and fluid velocity. The effect of the particle assembly on the 
shear viscosity in this tensor is not discussed nor is the bulk viscosity included. 
As shown below (see the Appendix) the latter term is in general large compared 
with the shear viscosity term and is important dissipatively. His equations 
involve the solids velocity, the fluid velocity and a further velocity which repre- 
sents the transport of the two phases together. The equations he derives for the 
total momentum of the two phases, together, involve a virtual-mass term: this 
violates Newton’s third law. The stability of the system he considered is not 
discussed. Again compressibility effects are excluded. 

The cases considered by Van Deemter & Van der Laan (1960) and €€inze,( 1961) 
are not strictly fluidized states unless appropriate conditions on the balance of 
forces is applied as a form of boundary condition. The form of the equations is 
not changed. 

Jackson (1963) in Part I obtained equations for the momentum balance of 
a fluidized system. His equations are effectively those obtained by Carrier & 
Cashwell (1956) when temperature and compressibility effects (energy equations) 
are excluded from the latter except that Jackson included a very artificial addi- 
tional-mass term, dependent only on the fluid velocity. Neither viscous stress 
terms nor compressibility effects are included. He studied small internal waves 
and found them to be unstable On the measure of the instability he found, he 
classified various fluidized systems. His equations, however, would also result 
in unstable surface waves. In  view of the importance of the stress tensors on the 
growth of small disturbances and their stability or non-stability such a classifi- 
cation is premature. 

In  this paper a set of conservation, momentum and energy equations (including 
compressibility and heat effects) are obtained by considering the two phases on 
a continuum basis and expressing, in the usual way, the appropriate balance of 
momentum and energy passing through a surface in the composite fluid. A solids 
and fluid stress tensor are included and discussed (see $ 2  and the Appendix). 
The equations here derived differ from all so far suggested. It is found that, 
consistent with observation, small internal waves are unstable and surface waves 
stable (in the case when the density ratio of solids to fluid is large). The method 
of treating the surface boundary conditions is given in $5.  The case of internal 
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waves in fluidized beds (without compressibility and heat effects) is discussed in 
full in $ 4. These beds will be referred to as incompressible beds. In  $ 6 the effects 
of large temperature changes within the bed are studied: such beds will be 
referred to as hot beds. What will be described as centrifugal beds are briefly 
discussed in $ 7  together with the effect on the equations of such a rotating 
system. If the particles are of an electrically conducting material applied electro- 
magnetic fields will affect the motion of the particles and hence of the fluid. The 
effect on bubble motion could be considerable. The stability of a bed with a 
magnetic field aligned with the gravitational force is briefly discussed in the case 
of an infinitely electrically conducting particle medium in $ 8. The experimental 
evidence available (including studies of gas fluidized, liquid fluidized and hot 
beds) on stability and in particular on surface wave propagation bears out the 
analytical results derived in this paper. 

2. Conservation and momentum equations 
The equations are derived on the basis that the bed, uniformly fluidized by 

a fluid of density pf,$ consists of particles of identical mass m, radius a, volume r 
and density ps (in general a constant). Let v,, vf be the average velocities of the 
particles and fluid respectively over some volume large compared with the 
particle size. Both phases of the flow are thus treated as continuum flows; that 
is rapid local variations of the v, and vf and the fluid pressurep are averaged out. 
Let the number density of the particles be n.? Let 2 ( = n ~ ) ?  be the fraction of 
the particles in a unit volume. Conservation equations for the particulate and 
fluid phase, respectively, are 

divp,Zv, = - a(p,Z)/at, 

divp,(i - z)vf  = - apf(i - z)/at. 

The total momentum equation is obtained in the usual way by considering 
the momentum balance within a fixed surface S enclosing a volume V of the bed. 
Let V ,  and V ,  be the fractions of V occupied respectively by the solids and fluid, 
the volumes being enclosed by surfaces S, and S,. If we neglect boundary 
particles on S the momentum balance is 

-/ pfFfdT-/ p,F,dK-/ n f . d S , - /  8, xs.dS, = 0, (3) 
VJ Vs SJ 

where 

g is the gravitational constant, j a unit vertical vector, F,, Ff the external forces 
per unit mass an the solids and fluid respectively, and x,, n, the viscous stress 

t As an example, if air and 0.5 mm glass spheres (ballotini) are used, a typical bed in 
a fluidized state has n. = 9000 ems, 2 = 0.59, and the interstitial 
velocity of the air is approximately 50 cmjsee. 

d/dt, = apt + vf . grad, d/dt, = a p t  + v,. grad, 

7 = 6.55 x 

$ A partial list of symbols is given at the end of the paper. 
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tensors (which include the pressures) of the solids and fluid respectively. Since 

dK = Z d V ,  dV, = ( l - Z ) d V ,  

and using the divergence on the last two integrals, equation (3) gives 

pr(l - 2) d v f / d t f  +p,Zdv,/dt, = -gCpt(l - Z) +ps zl j +pr(l - 2) F, 
+p,ZFs+(l-Z)divnf+Zdivx,.  (4) 

Note that the respective integrals over the actual particles themselves of xf and 
x, cancel as action and reaction. In  (3) and (4) we have omitted the effect of 
electrostatic forces which are negligible except in a few extreme cases, as for 
example when very fine particles are fluidized with dry gas. Such effects near the 
containing walls are dominated by the boundary-layer effects. These cases and 
regions are excluded from this discussion. 

We formally write 

7Tf 23 .. = -paiii + cTfKj, 7rSij = -p ,  aij + cT,$ ( 5 )  

(6) 

(7)  

where p, p ,  are the shear viscosities and 5, the bulk viscosities of the fluid and 
solids respectively. Equations (4) and (5) formally give the usual momentum 
equations in the limiting cases Z+O and Z - t l .  The latter case being that in 
which the particles become smaller but more numerous as 2+ 1 so that p, does 
become the usual pressure. The former limit must be interpreted as that in 
which the particles become smaller and smaller. 

The particle collision term (that is the p,-term) is in general negligible and will 
be taken to be zero for the following reasons. It is an experimental fact that in 
fluidized beds practically no noise is noticeable, which would not be the case if 
collisions were frequent. There is very little attrition observed. The particle 
motion (both visually and by X-rays) around a bubble suggests that there is 
little interference between neighbouring particles. In  fact there is no mechanism 
by which a solids pressure could be transmitted except by frequent collisions, 
which is not the case, or by high-frequency oscillations of the particles which are 
inappropriate because of the high energy which would be required and dissipated. 
Thus, in ( 5 )  we shall take p ,  to be zero. To be consistent we must replace (1 - 2) 
by unity in the p-term in (4). 

depends on the viscous effects of neighbouring 
particles in the flow field. In  the Appendix it is shown that reasonable forms 
for ,us and 5, are? 

where A and B are constants of O( 1) and D, = Z / ( Z , - Z ) ,  where 2, is the satura- 
tion value of 2 (that is when the particles are not fluidized) for given particles. 

are not specifically required in this paper, but their 

where p is the fluid pressure, and p ,  the solids pressure (a form of collision 
pressure), and 

qfij = P(avri/axj + avf9/axi) + (5- Qp) Sij div vf ,  

qs.. 2.3 = ~,(avSKpxii + av,,/ax,) + (5, - $,us) aiii div v,, 

The nature and form of ,us and 

rus = PAD,, 6 = P W ,  

t The actual form of ,us and 
inclusion is required in the equations. 
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D,is of O(a/h) t  where 2his the distance between the particles. In  normal fluidized 
beds D, $- 1. Thus a reasonable approximate form for (7) is 

(8) gsij = pAD,(avsi/axj + avsj/axi) +pD,(BD: - $ A )  8+,. div v,. 
The total momentum equation (4) is thus approximated by 

p,(l-Z)dv,/dt,+p,Zdv,/dt, = -q[p,(l -Z)+p,Zl j-gradp+pr(l-Z)F, 

+ ps ZF, + ( 1 - 2) div Q, + Z div e,. (9) 

We now consider the solids momentum equation in a similar way to the above 

ps Z dv,/dt, + qp, Zj - ps ZF, - 2 div Q, = interaction forces due to the fluid. 

(The fluid momentum equation is obtained by subtracting the above from (9).) 
The main interaction forces are (i) the buoyancy, (ii) an additional mass term, 
and (iii) the viscous drag. 

and get 

The buoyancy term is p,Zgj. The additional mass term is taken as 

Cp,Z d(v, - v,)/dt, dfdt = a/at + (v, - v,) .grad, (10) 

where C is an unknown function of the particle geometry and fluidized lattice; 
i t  is taken to be of O( 1). This is a generalization of the case of a single sphere in 
an unbounded inviscid flow, in which case C = 0.5. The actual form of the 
acceleration term in (10) is conjecture. A term like Cp,Z(dv,/dt, - dv,/dt,) is also 
reasonable. A comparable generalization of a form suggested by Corrsin & 
Lumley (1956) for the motion of a single particle in a turbulent fluid would result 
in a term Cp,Z[dv,/dt,+3d(v,-vs)/dt,]. At the present time, the form of such 
a term can only be suggested. In  any case in gas-fluidized beds such a term is 
of second order in the gas-to-solids density ratio (when compared with other 
terms in the momentum equation involving p,) and therefore is not of first import- 
ance in such beds. The effect on other beds can be estimated. 

The Reynolds number Re, based on the particle diameter 2a, is 2p,a lv, - v,l/p. 
In  most fluidized beds Re is O( 10). The drag force, F, on a particle will, in general, 
be a function of 2, (v,-v,) and Re. Rowe (1961) has found, experimentally, 
a curve for the ratio of the forces on a particle, for a given velocity of the fluid, 
when in a uniform assembly of similar particles to when it is isolated. The form 
for F may be written as 

(11) 

where h/a is the dimensionless spacing of the particles, 2h apart, referred to a as 
the basic length and C, is the appropriate drag coefficient. In  the range of 
Reynolds number relevant to most fluidized beds C, is given empirically by 

C, = (24/Re) (1 + 0 ~ 1 5 R e @ ~ ~ ~ ) .  

The first term gives the Stokes drag which is usually sufficient for Re < 0.2. 
From (11) the force F on a particle in a fluidized bed may be approximated by 

= C,(ra2) i j p , ( v , - ~ ~ ) ~  (1 +0.68a/k),t 

F = (1 + 0.15 6rpa( 1 + GO,) (v, - v,), 
t The limit h -+ 0 is not included: h > 0 always. 
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where G is a constant of O( 1). We anticipate that the (1 + 0-15Re0657) term in F 
does not vary greatly over the range of relative velocities found in fluidized beds, 
and accordingly shall take it to be effectively constant and put 

H = Average [ 6n( 1 + 0.15 

Thus for a given fluid particle size we shall consider F to be given by the product 
of the relative velocity times a function of Z alone. We therefore write the viscous 
drag force on the particulate flow as D, where 

D = (paH/m) p, z( 1 + GD,) (V v 

(12) 
with D ( z )  =(paH/m)p,Z(I+GD,). 

Figure lt illustrates the form of D(Z),  where Zo is the value at incipient fluidiza- 
tion. Note that [i3D(Z)/i32],=20 is large. 

j -  

= W )  (Vj - v,), 

FIGURE 1. Drag force on the particulate flow as a function of particle density. 

The momentum equation for the solids, using (10) and (12), is thus approxi- 
mated by 

p,Zdv,/dt ,  = -gZ(p,-pj) j +p,ZF,+Zdivcss 

+ (paH/m)p,Z(l +GD,) (Vj-Vs)+CpfZd(vf-v,)/dt, (13) 

and that for the fluid, on subtracting (13) from (9), by 

pj( 1 - 2) dv,/dt, = - gpj j + ,or( 1 - 2) Fj - gradp + ( 1 - 2) div Qj 

- (paH/m)p,Z(l +GD,) (vj- v , ) - C p j Z d ( v j - v , ) / d t .  (14) 

It should be noted at this stage that equations (l), (2), (9), (13) and (14) are 
not necessarily restricted to fluidized beds but also apply to general dispersed 
two-phase flow. It is envisaged that the velocity of the fluid in these cases is 
greater than that necessary for incipient fluidization. 

An immediate simplification of the equations is obtained if we restrict ourselves 
to gas fluidized beds or any in which pf/p, < 1 (in fact < 0.1 is sufficient). In this 
case we may neglect all the pf- compared with the p,-terms. If there are no com- 
pressibility effects expected (as, for example, exists in hot beds, 0 6) the velocities 
are such that pr + const. p8 is also taken to be constant. The gas stress tensor 
is small compared with the solids stress tensor and may be neglected in com- 
parison. If we further omit external forces (other than gravity) F, = 0 = F,. 

t A similar curve has been obtained theoretically by Kuwabara (1959). 
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Thus, from equations (l), (2), (13) and (14), using the above approximations, we 
obtain the following set of equations which are a closed approximate set for most 
gas fluidized beds in which temperature and compressibility effects are excluded: 

div Zvs = - aZ/at, 

div (1 - 2) vr = aZ/at, 

ps 2 dv,/dt, = - gp,Zj + 2 div as + D ( Z )  (v, - v,), 

gradp = -D(Z)  (v,-v,), 

where D(Z)  is given by (12) and Q, by (8). 

3. Energy and state equations 
We now consider the conceptual surface S, above, to move with the fluid and 

consider in the usual way the rate at which work is done on the surface. This 
gives, for the solids and fluids together, 

where qr and q, are the heat flux vectors of the fluid and solids, R,, R, are the 
external or internal reaction heat inputs per unit mass to the fluid and solids, 
I,, I, are the fluid and solids enthalpy, equal to cPTf, c,T, respectively, with cp 
the specific heat a t  constant pressure of the fluid, c, the specific heat of the solids, 
and T,, T, are the respective temperatures of the fluid and solids. Write 

(17) 1 (xf.grad).vf = cDf-pdivvr, 0, = gjijav!,/axi, 

(x,. grad). v, = 0, - p, div v,, 0, = cstj av /axi, sj 

where Qj and 0, are the viscous dissipation functions defined by equations (17). 
In  the usual way we now use the divergence theorem, the conservation equations 
(1) and (2) and the separate fluid and solids momentum equations (which add to 
give (4)) (that is, we are retaining p, a t  this stage) on equation (16) which gives 
one form of the total energy equation as 

[p,( 1 - 2) d(C, T,)& - dp( 1 - Z)/dtf - ( 1 - 2) 0, - ( 1 - 2) div q, - pr ( 1 - 2) Rr] 

+ [p,Z d(c, T,)/dt, - d(Zp,)/dt, - 20, - 2 div q, - p,ZR,] 
= prZgj. (vj - v,) + D ( 2 )  (v, - v,)2 - &Cp,Z d(v, - v,)2/dt. (18) 

The formal limit 2 + 0, or 2-t 1, gives the usual energy equation when these 
limits are appropriately interpreted: the limit vr+vs is the correct limit in each 
case and the right of equation (18) tends to zero. 
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The individual energy equations require a temperature term which is a function 
of (T, - T,), comparable to the drag term in (12). We shall approximate this term 
by (k/,u) D(Z)  (T, - q), where D ( 2 )  is given by (12) and k: is the fluid conductivity. 
As in 9 2 we shall put p,  equal to zero. In  this case, the consistent fluid pressure 
term in (18) is (1 - Z)-ldp(  1 - Z)/dt,. The approximate energy equations for the 
solids and fluid respectively are thus given by 

PSZ d(c,T,)/dt, - Z @ S  - z div q, - PSZR, + ( k / A  

pr( 1 - 2) d(C* T,)/dt ,  - (1 - Z)-ldp( 1 - Z) /d t ,  - (1 - 2) @, - (1 - 2) div q, 

(T, - T,) 
+ p,Zgj . v, + D(Z)  v, . (v, - v,) + Cp,Zv,. d ( v ,  - v,) /dt  = 0, 

- P,( 1 - 2) R, - (W-4 D ( z )  (T, - T,) - P, zgj . vf - W )  vf - (vf - vJ 
- cp, zv, . d ( v ,  - v,)/dt  = 0. 

(19) 

(20) 

The equation of state for the fluid is taken as 

P = P, WT,, (21) 

where W = cp - c,, c, being the specific heat, at constant volume, of the fluid. 
(If p ,  were not zero a comparable equation would obtain for it.) 

Again, these equations are not restricted to fluidized beds, but apply to general 
dispersed two-phase flow. 

The conservation equations (I), (2), the momentum equations (13), (14), the 
energy equations (19), (20) and the equation of state (21) form a closed set of 
equations for vs, v,, p ,  2, T,, T,, p,. When variations in T,, T,, p, and p, (p, % p,) 
are negligible the energy and state equations are not necessary and the appro- 
priate equations for gas fluidized systems are approximated by (15). The 
remainder of this paper will be concerned with finding solutions to the equations 
derived above. 

4. Propagation of small disturbances in incompressible beds 
We shall refer to incompressible beds as those in which compressibility and 

temperature effects are negligible, and so p, is taken to be constant. We also take 
p, to be constant and restrict ourselves to the case where F, = 0 = F,. We shall 
consider, in this section, the stability of such beds when subjected to a small 
internal disturbance. The general viscous equations (those equations which 
include the stress tensors) are studied for general R = ps/pf ( > 1). Generally 
R 9 1 for gas fluidized beds and a good approximation is given by the limiting 
case R -+ 00. 

We consider the propagation of small two-dimensional? disturbances super- 
posed only on the steady state v, = 0. Cartesian co-ordinates x, y are used with 
y being measured positively in the vertical direction. Unit vectors in the x-, 
y-direction are i, j respectively. The bottom of the bed is at y = 0 and the surface 
is a t  y = yo. From (l), (2), (9) and (13) with p,, p, constant and F, = 0 = F, 

7 It is most unlikely that three-dimensional disturbances would give any fundamentally 
different motions. 
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a steady-flow state with vs = 0 and all other quantities constant except the 
pressure, is 

vs = 0, vj = (O,Uf,) = (O,v0),\ 

where wo, Z,, (p),,, and p o  are defined by these equations. What is effectively 
another steady state with Zo not constant is studied in tj 7, the centrifuge case. 
Experimentally 2, appears to be constant in the fluidized beds discussed in this 
section (excepting bubbles). 

We now consider small perturbations about the steady state given by equa- 
tion (22) and, since only constant coefficients arise, we anticipate the exponential 
character of the solutions by writing 

(23) 

where the accent denotes dimensionless perturbation quantities, 6 and h are 
wave-numbers, c is a velocity and t is the time. Substitution of relations (23) 
into (l), (a), (9) and (13) with p f ,  ps constant, Ff = 0 -= F, and using (22) gives 
the following dimensionless first-order perturbation equations : 

1 
v, = vov;E, vt = vo[j +v;E], 

E = exp [i 6(z - ct)  + h ( y  - yo)], 
= zor1 +Z’EI, P = (P)o +pop’E, 

zv;, + iVL1 - ifiJNZ’ = 0, 

ZV;, + ivj1 - D(z - iwN) 2’ = 0, 

(24) 

(25) 

-v~,[{ iw+I12(z2-  l)+II,z2}j+{izII,}i] 

- v;,[(izIIl> j + (iw + I12(z2 - 1) - II,} i] + R - 1  ---NZ’j + [zj + ii] PIP __ = 0, (26) 
R RD 

R 
~ 2 ( z 2 - -  

C 

+ N(R- 1) (z-iwN)-II1z2- R - 1  ) j - ( i zn1A)  i] 
C 

i w R  R + v;l [ - [~-ZII~+&) j + (..- R - 1  __- r12(z2- 1)- R - 1  

(z - iwN)+II  - i -N9Z’ j  = 0, (27) ‘R-1  I 1  C 
+ N T )  

where, we have used the fact from (13) in the steady state that 

g(Ps -/g = (paH/m)ps( l+ G Q J  vo = vo/zo, (28) 
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z = A/& 0 = &/(6g)J, D = Zo/(1-Zo), DSo = zo/(zS-zo), 

n2 =  AD^, e,, n1 = D , ~ ( ~ A  + B D : ~ )  e,, N = (gpV;)+, 
p = ( ~ / 9 ) * P O / K  v = Pr(1 - Z o ) V , ,  R = P*/Pf. 

(22 -  1) L,(w, 2 )  L2(w, 2 )  = 0 ,  

475 

and the dimensionless parameters 

9 = 1 + DSo)/(l + GDS0), 62 = ( / 9 S 3 / g p 3 4  8, = (Q + </P) 02, I ( 2 9 )  

The dispersion relationship for equations (24)-(27) reduces to 

(30) 
where 

R- 1 
R + 1) ~ R + (IT, + n,) (1 - 22) 

+ N (R  - 1) ( 1 + RD) - R(z2 - 1) {8,( C + R) + n2( 1 + CD))]  

c22 
- z(R - 1) -~ + -+ (R - 1) N (e2+DIT2) R(z2- 1) (R-  1) RD N2 [$ 

1 RII z 
N 

+ ~ ( ~ ~ - 1 1 ) - - 0 ~ I I ~ ( z ~ - - l ) ~ R ~  . 

The (w,  z )  relations which correspond to the physically possible motions are 

L1(w,2)  = 0, L 2 ( w , z )  = 0. (33) 
given by 

If z (effectively the dimensionless y-component wave-number) is given and is 
imaginary, equations (33), each quadratic in w, give the w’s and hence the wave 
speeds and growth rates of small disturbances propagated in the interior of the 
bed. 

For general R not near the limiting values unity and infinity there appears 
one w from each of equations (33) which represents a wave which initially grows 
exponentially. The remaining two w’s represent attenuating waves. Let wol, wll 
be the solutions of the first of equations (33), and wO2,wl2 the solutions of the 
second of equations (33), the zero subscript w’s representing the growing waves. 
At either end of the R scale there is only one unstable mode. As R+co, wol 
persists as the unstable mode and wo2 disappears, whilst as R+ 1 + , wo2 persists 
and wol disappears. In  the latter case the expression (31) becomes linear in w ,  
and in the former, expression (32) becomes linear in w ;  each linear form equated 
to zero gives only the stable oscillation wll or w12. 

The phenomena to be discussed in a later paper are related to beds where 
R 9 1. A good approximation is given by R+ co and it is therefore appropriate 
to discuss this case in detail, in which event 

- ( N ( D  + 1) + (IT, + nz) (1 - x”}],  (34) I 001, w1, = *i[{“(D + 1) + (rI, + II,) (1 - 2 2 ) ] 2 -  4 4 0  + 9)}+ 

wl, = - in2( 1 - 22), 
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where the appropriate branch is taken in the square root so that ool has a positive 
imaginary part. It is the above uol-wave or that from the first of equations (33) 
with R B 1 which probably gives the linearized description of the way in which 
a bubble (or void) starts and rises in fluidized beds in which R B 1. Solving for 
2’ and p’ (see 3 5 )  we find that when 2’ > 0, p’ < 0 and so a solids condensation 
is accompanied by a decrease in pressure, and vice versa. 

Equations (31)-(33) furnish a way in which general fluidized beds may be 
classified. For given bed characteristics the mode with the largest growth rate 
would be the reasonable one to study and provide consistent numbers for a 
given 2. Thus no single solution, neither wol nor wo2, would give a reasonable 
classification over the whole R-range of interest. 

As mentioned in the introduction there is a fundamental experimental and 
observational difference in beds when R > 10 and R < 10 approximately. The 
former type of bed has bubbles of fluid rising up through the bed whilst the latter 
does not. From observation in the R < 10 case the particles and fluid are 
turbulent and any bubble of fluid injected into the bed is rapidly dispersed. The 
above linear analysis gives no indication as to whether a bubble will or will not 
form, it states only that small internal disturbances will initially grow exponenti- 
ally. In  fluidized beds with R % 1 there is only one unstable mode of interest 
whilst for R < 10 there are two possible unstable modes of interest. Although 
this may be some indication that the two regimes are basically different it is clear 
that bubble formation usual in most gas fluidized beds and the ‘non-bubble’ or 
turbulent motion prevalent in most liquid fluidized beds is essentially a non- 
linear effect. 

5. Surface wave propagation in incompressible beds 
Experimentally, when bubbles exist in a bed, they generate surface waves on 

breaking the surface. These surface waves attenuate very rapidly and have 
practically disappeared within a few wavelengths. Observation of surface waves 
in very shallow beds may be difficult and the results confusing and inconclusive 
because bubbles may span the depth of the bed and result in what appears to be 
channels through which only fluid passes. However, when ‘genuine ’ surface 
waves are generated they are also stable. In  the case when beds cannot sustain 
bubbles, surface waves are also quickly damped. Thus, except possibly in very 
shallow beds, small surface waves appear to be highly stable. 

Equations (30)-(33) are a set of relations which give various z’s as functions 
of u. There are eight roots for x .  Further relations, which come from appropriate 
surface conditions are required so that the w’s and x’s may be determined. 
Clearly the only physically realistic w are those which give Rex > 0, otherwise 
the conditions at the bottom of the bed could not be satisfied. Clearly all z’s in 
equations (30)-(33) are not allowable. For example, z = - 1 is excluded. 

Surface conditions are obtained as follows. Let y = yo + 6(x,  t )  be the free 
surface. If we integrate the momentum equation (9), with pr,p8 constant and 
F, = 0 =- Fs, between y = yo and y = yo + 6 we get, to first order, 

(35) P(Y0 + 5) -P(Yo) + [PIP - 2 0 )  +P,Z01 95 = 0- 
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p(yo + 6) is the ambient pressure above the bed. Consistent with (23)' 

P(Y0) = [(P3)01~=I/, +POP' exp - 4, 
where the first term on the right is the ambient pressure above the bed. If we 
write [ = {'exp i6(z - ct), 

and use the last two equations and (35) we get 

POP' - [P,P - 2 0 )  +P,Zo1 s5' = 0. 

agat = v,, => vov;, + iscg'= 0, 

v:, + iw(p 'P/RD) [ 1 + l /RD]- l=  0. 

At a free surface we also have, to first order 

which, combined with the p' - 5' equation above gives the kinematic condition 

(36) 

Further surface conditions on the particulate phase are those which require 
the normal and tangential stress tensor to be zero. Thus, from (S), 

vsii = 0 * div v, = 0 * zv;,+iv;, = 0, (37) 

uSl2 = o 3 avSllay + av,,/ax = o - iv;, + xVi1 = 0, (38) 

on the surface. Note that the boundary condition (37) would be different if we 
had neglected &4 compared with BD,2 in (8). As shown below the form of (37) 
is essential to the solution. The v;,, vil, p 'P /RD as functions of z, w are obtained 
from (24)-(27). Since the determinant of the coefficients is zero (equation (30)) 
the V ; ~ , V ~ ~ ,  p 'P /RD are proportional to any corresponding set of cofactors of 
these terms in the determinant. Any set (from any one row) which does not 
give v;,, vil, p 'P/RD all identically zero for any specific x from equation (30) is 
allowable. Denote the solutions for each x byfW8,[w, ~ ( w ) ] , f ~ ~ ~ [ w ,  z (o)] ,~ , [w,  z(w)]  
respectively. These are, in general, functions of w and z(w) :  the latter are from 
(30)-(33). If there were only one z, then (36)-(38) would give the possible w if 
the equations were consistent. However, since there are several z from (30), (33) 
the solutions for v;,, vil, p 'P/RD are given by 

I = c Ajfv&J, Zj(W)I,  
i=l 

where the Ai are constants which have to be determined. The summation for j  is 
over the number of x's with positive real part from (30)-(33) determined 
a posteriori. Thus, with (39), the appropriate boundary conditions (36)-(38) give 

c AjGfV,,[% Z j ( 4 l - l -  W l +  l/RD)-lfpI[w, Zj(41) = 0 ,  

z Aj{Zjfw3*[W, q 4 1 +  ifv&, Zi (W) l I  = 0, 

c Aj{ifWS&J, q41+ ZjfWg1[W Z j ( 4 l I  = 0. 

i 

i 

i 
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Equations (40) give a set of equations for the A,. The appropriate conditions on 
the coefficients for a non-trivial solution provide the relationships between the 
allowable w in terms of the z,. Equations (33) with these w(z,) substituted then 
provide the corresponding 2,. It is at this stage that the number of allowable zi 
(that is with Rex, > 0) is found. 

Using the cofactors of the first row in the determinant of the coefficients in 
equations (24)-(27), and introducing 

U = RD/( 1 + RD), W = N + {C /N(R - I)} (Z - iwN),  

X = {R/(R - l ) }  [ i ~  + I12(z2 - l ) ]  - {C/N(R - l)} ( Z  - iwN) - N ,  1 (41) 
Y = ( l /RDN) ( z - i w N ) - B , ( ~ ’ -  l)/D, 

we get, apart from a constant independent of w and x ,  

fwsa+ uiwf, = (1 - Z ~ ) L ~ ( W , Z )  [uiw2RelIIl(i-z2)/~(R- 1) 

- UBl(io2X+wz9)/D+ UiII lw2{W+RY/(R-  l)}] 

- [ Uiw2{L2(w, 2)}2+ UwzL2(w, 2) { W / R  + W (  1 - U ) / U  + Y 9 )  
+iW{(R- 1) W / R -  YB}],  (42) 

zf,,, + ifws1 = W(z2 - 1) L,(w, 21, 

if,,, + xfws, = W[2iwzL2(w, 2 )  - (1 + 22) ((R - 1) wp - Y q ] .  

(43) 

(44) 

From the first of equations (33) using (31) there is only one z = zl, say, which has 
Re z1 > 0. Also L,(o, zl) rt. 0. Further z = + 1 is an allowable solution of (30). 
Because of the form of (43) all zj except z = z1 make this term zero and the con- 
sistency of equation (40) thus reduces to requiring all two by two determinants 
of the matrix 

ifv,,(w 1)+fV,,(w, 11, * ‘ * Y  ~f,,,~~,~~)+~,f,,,(~,Z,), ... “‘I [f ( 
v,, 0, I ) +  Uiwf,(w, I),  ** . ,  fw,2(w,z,)+ Uiwfp(w,zJ, 

to be zero, where j goes from j = 2, and the z, (j p 1) are solutions of the second 
of equations (33), L,(w, z j )  = 0. Note that if we had omitted the shear viscosity 
contribution in v8i, compared with the bulk viscosity contribution this simplifi- 
cation would not have been possible. In  fact, in the particular case (R+oo) 
evaluated below, it would have predicted an unstable surface oscillation ! Thus 
The forms of (42), (44) which are used in the above matrix become, on extracting 
appropriate non-zero factors, 

} (45) 
If,,, -t uiwfp12=2j = - i{ W [ ( R  - 1) W / R  - yg]},=,, 

[ifv8l + ~fv,,lB=zj = - { (1 + z2) W [ ( R  - 1) W / R  - Y91>,=,. 
When z = 1 the last square bracket in (42) has as a factor half the square 
bracket in (44), that is 

[Uiw2{L,(w, l ) } Z +  UwL,(w, l ){W/R+ W ( 1 -  U ) / U +  Y9}*=l 

+ i { (R - 1) W / R  - Y=9}*=11 

= [iwL,(w, l ) -{(R- 1) W / R -  Y 9 } J  [ U W L ~ ( W ,  l)-i{W}z=l]. 
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The consistency condition from the matrix now reduces to requiring all two by 
two determinants, always using the first column, of the following matrix to 
be zero: 1. [ 2{W>,=, , (1+2"2, (1+223), ..., ( I + $ )  

- UwL,(w, 1) + i{ W}*=l, i ,  i , ..., 

UwL,(w, 1) (1 + 2;) + i{ W),=, (1 - 23) = 0, Thus 

for all zi (2 =k 1) with Rezi > 0, where the xi are solutions of L2[w(z ) , z ]  = 0. 
Equations (46) gives w = w(zi)  which when substituted into (33) give the z j ,  
including t h e j  = 1 case from L,(w, z )  = 0. 

For given bed constants (46) with (30)-(33) give the surface modes of oscilla- 
tion and the corresponding wave-numbers. For general R the algebraic equations 
are complicated but numerical solutions would be easily found. 

We shall consider in particular the case of fluidized beds when R j - m  which 
can be solved algebraically exactly. The equations (30)-( 33) imply 

(46) 

w2+iw"(D + 1) + (rIl+ r12) (1 -2791 - z ( D + 9 )  = 0, 

i w [ l -  (B,/ND) (22- l)] + [r12(22- 1) + ( Q N D )  (22-  1) ( N -  r I z ( x 2 -  l))] z=*l'l = 0. 

(47) 

(48) Equation (46) reduces to 25 - 1 = 2 d / (  1 - w2), 

where the zi are solutions of the last of equations (47) with Rezi > 0. If we 
substitute (48) in the last of equations (47) we find that the algebraic equation 
in 7 = - iw is a polynomial with real positive coefficients, namely, 

w = -ir12*i[rI;-l]+, 

21 = [ - i /2w(  rIl+ rIJ] 

j = 2, z2 = (l-l/nt)+ if r12 > 1 

= (l/II;-l)ii+ if I1, < 1. 

2 = 1, 

x [((D+9)2+4iw(rI1+rI,) [w2+iw{N(D+ 1)+ rII,+I12}l}+-(D+9)I,' (50) 
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6. Internal stability of hot beds with R B 1 
In  this section we shall consider the propagation of small two-dimensional 

disturbances (as in $ 4) in a gas fluidized bed with R % 1 where compressibility 
and heat effects are large. This could arise from reaction heat in the bed or from 
externally applied heat. We consider the case ps constant and Ff = 0 E F,. 
The conservation equations (1) and (2) are used, with ps omitted in (l), and the 
approximate momentum equations are the third and fourth of (15). 

A practical case of importance in an application to a nuclear power source is 
that in which R, is large compared with any other heat source. In fact gas 
temperature changes of O(lO3K) are anticipated. The case we consider here is 
that in which Qr, divqr, R,, a,, divq,, pf2gj. (vr-v,), D ( 2 )  (vf - vJ2 and 
CprZd(vr-v,)2/dt are small compared with R, and will be neglected in the 
energy equations: we shall use the two equations (18) and (20). For convenience 
of reference the equations we use are the following (from (l) ,  (2), (15), (1 8), 

div Zv, = - aZ/at, 

divpr(l-2)vf = -apr(l-2)/at, 

p,Zdv,/dt, = -gp,Zj+Zdivu,+D(Z) (vf -v,), 

(201, (21)): 

P d P  = - (Vf - v,), 
pt( 1 - 2) d(C, Tj)/dt, +p,Z d(c,T,)/dt, - (1 - Z)-l d( 1 - Z)p/dt, -p,ZR, = 0, 

~,~d(c,T,)ldt,-p,ZRs+ ( k / P ) W )  (T,-T,) = 07 

P = Pr%T,. 

We shall treat (as in $4)  only superpositions on the steady state v, = 0, 
a/at = a/ax = 0, vr = (0,v). All steady-state quantities are functions of y only. 
Equations (51) in the steady state give 

If we anticipate that the pressure drop through the bed is to be of the order 
of one atmosphere then 

(Higher pressure drops imply deeper beds with larger temperature variation.) 
We shall therefore neglect the pressure term in the first of the energy equations 
in (52) and it becomes 

VC, dT,/dy = ps2R,. 
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We shall adopt the approximation that ,u and k depend linearly on the tem- 
perature. Thus 

We introduce 
(53) 

Since we are interested in the gross features of the phenomenon we further 
approximate by choosing in (12) 

G = 1, 2, = 1 s- D(Z)  = ,uaHp,Z/m(l-Z). (56) 

Thus, (50)-( 55) give the following approximate steady-state equations for hot 
beds: 

Pf(l--Z)V = v, v, = 0, Vf = (O,u), 

mg = d o )  TfaHvlTf(0) (1 - z), P + Mg = ~ ( 0 ) ~  
cp V[Tf-T,(O)] = MR,, T,  = mR,Tf(l-Z)/k(O)Tf(O)aH+Tf, p = p f B T f ,  

which have dimensionless solutions 

PlP(0)  = 1-75,  TflTf(0) = 1 + 4, 

z = dfl/dr = 1 - p”( 1 +at)/( 1 - yg)$. 
Pf lP f (0 )  = (1 - 7 t )P  +at) ,  4 4 0 )  = 1/(1 -7th 

Since a 9 1, a 9 y the last of equations (57) gives an approximate solution 

f; = [(1-/34)/ap3] [l -exp ( -  a&)], Z = ( 1  -@) exp (-apb), (58) 

which shows that an increase in the heat input (R, or a) produces an increased 
variation (a decrease with height) in 2. This is useful in the nuclear power source 
application because it implies that the hottest particles at the top of the bed are 
farthest apart. Note that the general case when D ( Z )  is that given by (12), 
rather than (56),  does not change the qualitative result. A comparable result 
to (58) was first found by Carrier & Cashwell (1956) but there D(Z)  is taken to 
be constant as compared with ( 5 6 )  above: a more complicated form than (58) 
results ! 

We now consider the superposition of a small two-dimensional disturbance on 
the steady state (57).  We denote steady-state quantities by subscript zero. 
Because the steady-state quantities are functions of y (or 5) the usual linearization 
would not result in convenient constant multipliers of an exponential factor as 
above. Since we are seeking only the gross features we shall approximate the 
variable multipliers of the perturbed quantities by suitable average constant 
values and accordingly use exponential factors as in $4. Clearly, fmt estimates 
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then, we writef- vfo = voj, vf = vo(j +v;E), ‘ 
Pf = P f & l  + P ; a  T, = T,$ + T P ) ,  
Z = Zo(l+Z’E),  T, = Tso(l+TiE), i  

v,= V,V;E,  P = Po(1 + T;E), 

+ = T,/Tfo, pr = PoCp/k,, c,/cp = 8.  

Substitution of (59) into (51) and using relations (29) and (60) we get, after 
some manipulation, the following first-order perturbation equations, where it is 
understood that all coefficients are replaced by their appropriate corresponding 

( 6 1 )  
constants: 

Z W ; ~ + ~ V ; ~ +  ( X - ~ O N ) / I ; + [ D ( ~ O N - Z ) - K , ] Z ’  = 0, ( 6 2 )  

(Z + K4) v : ~  + ivi1 - i0N2‘ = 0,  

- vL,[{iw - 11, + (ITl + n,) (z2 + 2zK, + K7)  + 8,K6(z + K,)} j 

- vil[{inl(z + K,) + i82(& - 2K,)} j 
+ ( i IT , (x  + K,) + iO,K,}i] 

+( iw- (n1-1-  H2)+ H2(~2+2~K3+K7)+~2K8(~+~3)}i~ 
+ N Z ’ j + [ ( z + K , ) j + i i ] p ’ P / R D  = 0,  (63)  

(59) 

t Where the subscript zero denotes the steady-state solution. 
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Nv;-Nv:+{N/(l -Z,)}Z'j+[(z+K,) j+ii]p'P/RD+NT;j = 0,  

483 

(64)  

vi2 K,, - ioQq5NT: = 0, 

V ~ ~ [ P ~ ( S K , , / N ~ Q ) ]  - T;+ T:[q5( 1 - iosPr/N)] = 0, 

(65 )  

( 6 6 )  

p;+T; = 0, (67) 

where in (65)-(67), since q5- 1 < 1,  P $ 1 and P/RD $ 1,  all terms o f  O(q5- l ) ,  
0(1/R), O( l /P )  and O(RD/P) are omitted. In  obtaining the first-order energy 
equation (65)  pf-terms cannot be dropped a priori in the fifth equation of (51 )  
since it is necessary for the steady-state solution that they be retained. It was 
found throughout that it was more illuminating to retain all terms until the final 
non-dimensional stage and then to neglect the small terms. 

For convenience we introduce 

and the dispersion relation for (61)-(67) becomes 

K1,(2z - iwN) [ iw(z  + K,) (L - i w )  + ( 1  - wK)] 

+ iwQ[(I  - i w )  {iwN(D + 1 )  - ( D  + I / (  1 - 2,)) 2 - iw(L - i w )  [z(z + K,) - l ] }  

- {iwN(D + 1 )  - (D + 1/ (  1 - 8,)) z}  {iJ(z + K,) + iK(z + K4) 
+ (2s-K,) (Z+K4) (L- iw)}+  ( l -wK){K,N-iJ[z(z+K,)-  l ] }  

+ iw(z  + K,) ( L  - iw)  K ,  N - [z(z + Kl) - I] (2 + K4) (L - iw) ]  = 0. (69) 

The square bracket term multiplying iwQ reduces to 

w3[i{z(z + K,) - I } ]  

- w2[N{z(z + K,) - l }  + NO{@ + K4) (2 + K,) - l }  + ( I  + L) {z(z  + K,) - l}]  

-iw[B(D+ 1 / ( 1  -Z,)){(z+K,) (z+K1)- 1}+N(D+ 1){iJ(z+Kl)+iK(z+K4) 

+ (z  + K,) ( z  + K4)L - I }  + { z ( Z  + K1) - I }  {IL - J K  - (2 + K4)} 
- K4N{iK + (2 + K,) L}] 

+ [Z(D + I / (  1 - 8,)) {iJ(Z + K,) + iK(Z + K4) + (z + K,) ( z  f K4) L - I }  

- {z(z + K,) - l }  {iJ + (2 + K J L }  + K4N].  (70) 

Equation ( 6 9 )  is a quartic in w (because of the K,,-term w = 0 is not a solution), 
which is complicated. However, since our prime interest is the question of 
stability we shall consider the form where 6 is large or small. 

In  the 6 % 1 case we may, as a first approximation, consider only the i d - t e r m  
(because Q w O(S)) and the dispersion relation is expression (70) equated to zero. 
With 6 large, we may, again to a first approximation, neglect the K,, K,, K3, K ,  
(clearly small-wavelength disturbances would not be affected by such bed varia- 
tions) and from (70)  get a crude approximate dispersion relation 

iwQ(x2- 1 )  [io+ r12(z2- l ) ]  [w2+iw{N(D+ 1)+  (rI1+rI2) (1-z2)}-22D] = 0,  
31-2 
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which gives the same as (34) when 9 = D: these have an unstable mode. How- 
ever, a careful order of magnitude argument in S with N % 0(6-*), I1, w 0(63), 
R % O(6) reduces (69) to 

w4R(z2 - 1) - iw3i2( II, + 2n2) (1 - ~ 2 ) ~  + w ~ R I I , (  II, + II,) (1 - z ~ ) ~  
+ ~ ~ R ~ z D I I ~ ( ~ - z ~ ) ~ - ~ z K ~ ~  = 0. (71) 

If we write w FZ O(&€) then consistent E from (71) are E = $, -2 ,  -$ with corre- 
sponding solutions for w given from (7 1) by 

} (72) 
iw = rII,(l -22 ) )  iw = (II1+rI,)(1-22), 

iw = ZzO/( II, + II,) (1 - z2), iw = K,,/RDII,( 1 - z2),. 

For internal waves z is a given imaginary number, and from equations (57) and 
(60) the average value to be used for K,, is clearly positive as is R, and so the 
first, second and fourth of equations (72) represent stable modes. The third gives 
a neutrally stable mode. It would appear, then, that the bed is stable. However, 
if we consider 6 % 1 in (34) we get exactly the first three of equations (72). The 
only extra mode is that with K,, involved which is stable. Thus, when higher- 
order terms are included in the derivation of equations (72) it  is the neutrally 
stable third mode which becomes unstable as it does in the no-heat case. In  
conclusion, therefore, when 6 is large there are four possible modes of oscillation, 
three of which correspond to those in the no-heat case in Q 4, one of these three 
becomes unstable when higher-order &-terms are included. The fourth mode 
which only appears in the hot beds is stable and in any event is of O(6-g). 

When 6 is small the first-order equation for the w from (69) is (since 
K17 K37 K47 K ,  O(s-l)) 

04[zR&] f iw3[NK,(K,0 + RDK,)] + W2[N8,K1K3K8(K10 + no&)] 
+ ~ ~ [ ~ Z ~ , K , K ~ K ~ ( K , ~ +  RDK,)] - 2zKlO = 0. (73) 

With w FZ O(Se)), (73) gives consistent values for E of -2 ,  -$, 4, $ with corre- 
sponding solutions for w from (73) given by 

} (74) 
i~ = N(K1, + RDK,)/zR, 
iw = 2z/N, 

iw = - O2K3K8, 

i W  = K10/82K1K3K8(K,O+ RDK,). 
From (57)) (60) and the expression for T,, K,, > 1, and so 

K,o+QDK, > 1+RDK4 = y ( l + a ~ ) ( 2 2 , - 1 ) / 2 a ( l - ~ ~ ) ( 1 - Z 0 ) .  (75) 
If we consider a % y the average K,, + RDK, may reasonably be that over E 
from 0 to 1 with 1 - y t  M 1. In  this case 

Kl,+!2DK, > l+RDK, M (y/201)[1-/34(1+a)-,8*]. 

From (57)) p (a form of the dimensionless gas flow rate) is such that 
1 -,84( 1 + a) > 0. Since 2, > 0 and so for small enough p, which is general in 
fluidized beds, K,,+ RDK, > 0. In  most beds 2, > 0.5 (large increases in flow 
produce bubbles and/or transport) and so from (75), K,, + RDK, > 0 in general. 
From (57)) (60) (neglecting the y’s) 

Their averages are clearly of the same sign, 
K ,  < 0, K~ > 0, & M - A a p s z , / r ( i + ~ ~ )  < 0. (76) 
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Thus, from (75) and (76)  the modes of oscillation in (74) are all stable except 
the third, which is neutrally stable. However, in $4,  from (34) ool, which 
corresponding to the unstable mode, asymptotes to - iSz(D + 9 ) / N ( D  + 1) when 
6 < 1. In  this form it is neutrally stable. Thus, as above in the 6 9 1 case, the 
neutrally stable mode in the third of equations (74) will give an unstable mode 
to higher order in 6 which is analogous to that in the incompressible gas fluidized 
beds ( 9  4). Again, it is this mode which probably gives the linearized description 
of the way bubbles are initiated in hot beds. 

Thus, it  appears that the effect of large compressibility and heat effects on gas 
fluidized beds with R 9 1 does not result in any more unstable modes of oscilla- 
tion that those found in incompressible beds. Although further modes of 
oscillation are introduced they appear to be stable. 

Although the general case, when 6 may have any value, has not been investi- 
gated in detail it  is most unlikely that any further unstable modes will result. In 
(75) it is understood that 2, nowhere becomes small. It might be thought that 
high gas flow rates would produce this. However, since there is an unstable mode 
as soon as the bed is fluidized this will result in bubble formation and any excess 
gas over the incipient fluidization requirement will move up through the bed in 
the form of bubbles. Experimentally this appears to be the case. In  fact increas- 
ing the gas flow increases the number of bubbles. If the velocity is high enough 
transport might take place. Certainly the effect of high gas flow rate does not in 
general markedly reduce 2, uniformly. 

In  view of the similarity of stability effects found in the above beds as com- 
pared with the effects found in the incompressible beds in $4,  it is most probable 
that similar surface wave effects (that is all surface waves are stable) would be 
found. The algebra involved in the study of surface waves would be complicated 
and from physical analogy seems unnecessary. Experimentally surface waves 
are stable and do not appear to differ from those found in the beds discussed in 
$$4, 5 and so will not be further considered. 

7. Internal stability of incompressible centrifugal beds with R 9 1 
In  view of the practical and effective use of gas-fluidized beds as heat 

exchangers in the application to a nuclear power source it has been suggested 
that the use of a centrifuge might allow even greater efficiency to be obtained 
and might perhaps result in a stable fluidized state. In  this section we consider 
the case of an infinitely long cylindrical bed rotating about its axis with angular 
velocity !2 which is large enough so that the centrifugal force is large compared 
with gravity. It is shown below that such beds are unstable to small internal 
disturbances as in the above cases. It is, however, potentially a more efficient 
heat exchanger because of the higher gas velocities possible. The interesting case 
of a finite length cylindrical bed is not studied here. 

Let T ,  0,  z be cylindrical co-ordinates with respective unit vectors i,, i,, k and 
with rotation G? = Qk. We shall consider incompressible beds and the equations, 
including rotation, are (assuming Q2r 9 g )  from (l), (2), (9) and (14) 

div Zv, = - aZ/at, (77) 
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div (1 -Z)vf = i Z / a t ,  (78) 

pf( 1 - 2) [dvf/dtr + 2S2 x vf - Qzri,] +p,Z[dv,/dt, + 2S2 x v, - Q2ri,] 

= -gradp+(l-Z)divof+Zdive,, (79) 

pi( 1 - 2) [dvf/dtf + 2S2 x v, - Q2ri,] 

= -gradp-D(2) (~ , -v , )+(1-2Z)div~~.  (80) 

In  (79) we have omitted the gravity term and in (80) the additional mass term. 
At first sight we look for a steady state in which 

Vf = @f1, Vf2, 01, vs = (0, v,,, 01, S2 = (020, Q) 

(that is anticipating i,-components because of Q) with all quantities functions 
of r only. The basic fluidizing velocity comes from the vfl which is directed inwards 
to the axis and so is negative. In  gas-fluidized beds with R 1, the steady-state 
first-order r-component of (79) may be taken as 

p,Z[v:Jr + 2avs2 + a2r] = dp/dr, (81) 

since  dive,]^ = 0 because vsl = 0 and [divetIr is small (because ,LL and pt are 
small for the gas) compared with the solids momentum. The steady-state 
@component of (79) gives 

[2 div ~ , ] e  = pt( 1 - 2) [vf, dv,*/dr + vf1 V ,  /r] - (1 - 2) [div efje, (82) 

(83) 

V f *  = 2$*. (84) 

and so [Zdive,], is of second order of smallness (O(p,, u)). The first-order 
r-component of (80) is dp/dr = - D(2)v f l ,  

and the first-order @-component of (80) gives 

The last equation and (82) imply that vs2 and therefore vfs are second-order 
small quantities. In  view of the above the first-order steady-state form, instead 
of the above, must be taken as 

v, = ( V f l , 0 ,  0) = (V ,O ,O) ,  

v, = 0, S2 = ( O , O ,  a), 
where from (78), (79), (80),  (81), (83) and (84) 

(85) 

(86) 

1 
I 

rpf(l-2)v = const. = - W 
dpjdr = ps2Q2r, 

dpjdr - - D(Z)v ,  

p = const. -p,C(Qr) + ips(Qr)2,  

2 = 1 -X /Qr ,  

v = const. - WQ/p,X, Xz = paHW/mpf,  

(W > 0) ,  

with solutions 

where as in 0 6 we have approximated for D ( 2 )  from (12) by taking G = 1 = 2,. 
In  the above we are considering the bed to be an annulus with ro < r < ri (the 

' depth' of the bed is ri - ro).  Since the steady state has only one component of 



On the mathematics of jluidixation. Part 1 487 

vr in the i, direction we can approximate the system by an equivalent Cartesian 

(87) 
system if we put 

V = - W ,  y = r i - r ,  j = -ir, I = lo, 

with a steady state 

. . .  

(88) I v, = 0, vf = vj = const., 
Z = 1 - Z/Q(r i  - y), 

P = ( P ) o = r ) o - P , ~ ~ ( ~ i - ~ ) + ~ ~ s Q 2 ( ~ i - Y ) 2 ,  

where po  is the pressure at the ‘bottom’ of the bed. The system thus consists of 
the steady state (88) with the first-order equations, from (77) to (80), becoming 
(77), (78) and, with G = 1 = 2, in D(Z) ,  

} (89) 
psZ(dv,/dt,+2Qk x v,) = - p s Z Q 2 ( r i - y )  j-gradp+Zdive,, 

gradp = - [pAHp,Z/m( 1 - Z)] (vf - v,). 

The propagation of small internal disturbances in such a system is a combina- 
tion of that studied in $ 4 except that there is a modified ‘gravity’ term and the 
steady state is not one of constant components, the latter being comparable to 
that in Q 6, and must be similarly treated. We thus look for solutions of the form 

(90) 1 vf = vo[j + v;E], v, = voviE, 
= ZO(1 +Z‘E), 1, = (p)o+PoP’E, 

E = exp [id@ - ct) + h ( y  -yo)], 

where the subscript zero, except on the co-ordinates and po, denote the steady- 
state solutions given by (88) and yo = ri - ro. As in $ 6  we adopt suitable average 
constant values for the variable co-efficient5 which arise from the fact that 
neither 2, nor the ‘gravity ’ are constant after manipulation in the equations. 

zv;, + iv;, + [D(iwN - 2 )  - K5] 2’ = 0 ,  

( 2  + K4)  v;, + ivil - iwN2‘ = 0 ,  

\ 

vi,[{I - iw}j - {J + 2v}i]+ vi1[{2v - K }  j + {L - iw}i] 

+ 6(r, - y) v2NZ‘j + [zj + ii]p‘P/RD = 0, 

, 

v = Q/(ag)*, K4 = (l/SZo) dZo/dy, K5 = (I/&) dD/dy, ’ 
K6 = (1/6) d[D(BD’ + $A)] /dy ,  K8 = (A/(?) dD/dy = AK,, 
I = ~ 2 - ( I J l + ~ 2 ) 2 2 - ~ e 2 ~ 6 ,  J = i [ r ~ ~ ~ + e ~ ~ , ] ,  

K = i[nlZ+e2(K6-2K8)], D = Zo/(l-ZO), 

I 
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with 2, from (88). The dispersion relation for (91), where the necessary appro- 
priate averages are assumed to be taken, becomes 

w3(z2- 1)+iw2[(I+L) (z2- l )+N(D+ l){z(z+K,)- l}-NzK,] 

+ w [ (  1 - 9) {IL + (Zu - K )  (Zv + J )  - S(r, - y) v2(z + K,)} 
+ { (D  + {I/( 1 - 2,))) z + K5} (1 - x(z + K,)} - iK,{N(Sv - K )  + iNzL) 
- i N ( D +  1){iI-K4(2u-K) +z(J+K)  -iz(z+K,)L}] 
+[(1-z2)6(ri- y) v2{zu+ J-i(z+K,)L}-K,iS(ri-y)v2N 
+ { (D + {I/(  1 - 2,))) + K5}  {iI - K,(Zv - K )  + z ( J  + K )  - iz(z + K4) L}] = 0. 

(93) 

There are three possible modes of oscillation as in the R 9 1 case in $4. The 
(ri - y) in (93) and (94) is some average value. In  view of the similarity between 
this case and those in $$ 4 and 6 we shall consider only the S 9 1 case, in which 
event (93) becomes 

(z~-1)[iw+IS2(z2-1)][w2+iw(ISl+IS,)(1-z2)+6(ri-y)u2z] = 0, (94) 

assuming that !2 is large enough and 0(112) or O(S%) > O(u). This last condition 
for some S merely allows the factorization in (94) and does not alter the over-all 
character. Clearly from (94) one stable mode is the same as w12 in (34). However, 
an unstable mode is evident in the last bracket of (94). Note that this unstable 
mode is that which compares with the neutrally stable mode which results when 
6 9 1 in wol in (34). Thus in the case of centrifugal beds if !2 is large enough so that 
gravity may be neglected there is an unstable mode which in the case of small 
wavelengths appears to give a growth rate larger than that found in incompres- 
sible gas fluidized beds. However, since no more unstable modes appear then in 
the non-rotating beds the use of centrifugal beds are potentially more efficient 
because of the higher v allowed than in ordinary beds, for the use envisaged in 
the introduction to this section. 

In  view of the similarity between the beds discussed here and in $ 4 it  is most 
unlikely that any new surface phenomena would result. The method of $ 5  is 
applicable. 

8. Electromagnetic incompressible beds with R > 1 
Fluidized beds in which the particles are electrically conducting may have 

their flow characteristics changed by the application of electromagnetic fields. 
This could be of importance in connexion with bubble motion in a bed with 
R 9 1. In  magnetohydrodynamics it is known that an aligned magnetic field 
can inhibit the onset of instability in a conducting fluid under certain circum- 
stances. In  this section we shall thus consider the internal stability of a bed in 
which the particulate phase is considered an infinitely conducting medium and 
which is subjected to a magnetic field aligned with the fluidizing velocity. We 
envisage a circular bed inside a solenoid: no external electric field is present. 
Consistent first-order equations for R 9 1 and pr constant are (l), (2) and 

psZ dv,/dt, = -p,Zgj - gradp + Z div a, + v(cur1 H) x H, (95) 
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gradp = - D ( Z )  (vj - vs), 

aH/at + curl (H x v,) = 0, 

(96) 

(97) 

E+vv,xH = 0, ( 98) 

where E is the electric field, H is the magnetic field and v is now the magnetic 
permeability. H must be such that divH = 0. Equations ( l ) ,  (2) (with pt 
constant), (95), (96), (97) are a closed set for vs, vf, 2, p ,  H. 

As above we consider perturbations of the uniform steady state 

v, = 0, vf =voj ,  H = Hoj, E = 0, p = = po-pss?/, (99) 

and, as in $ 4 since multipliers are constants, we look for exponential solutions 
involving exp [iS(z - ct)  + A(?/ - go)]. I n  the same way as in $ 4, we finally obtain 
a corresponding dispersion relation 

w ( z 2 -  1)  [ iw+ rI,(22- l)][w2+iw{N(D+ 1 )+  (rIl+ r12) (l--zZ)]-z(D+@] 

- ( i P / N 2 )  ( 2 2  - 1 )  [ w 2 (  1 - 22) 

+ iw( - z2N(D + 1) + r12( 1 - 2 2 ) 2  - z2rII,( 1 - 2 2 ) }  

+ z { l + z 2 ( D + 9 ) } ]  = 0, (100) 

where ,8 = vH~/psZov& a dimensionless measure of the magnetic pressure, and 
rIl, 112, D, 9, N are given by relations (29). 

Clearly for small P (100)  reduces to (34) which has an unstable mode. If 
P 9  1 then (100)  has an approximate solution 

w2( 1 - 22) + iw{ - 9 N ( D  + 1) + II,( 1 - 2 2 ) 2 - -  Z 2 r I 1 (  1 - z”} + z{ 1 + 2 2 ( D  + 9)} = 0, 

which clearly has an unstable mode of oscillation when z is a given imaginary 
number. 

It appears, therefore, that nothing is to be gained by applying a magnetic 
field to a bed, with electrically conducting particles, from the point of view of 
inhibiting instability. Use of this technique, however, would probably reduce 
the velocity of rise of bubbles, which are a result of the instability, in such a bed. 

9. Conclusions 
The equations derived in $4 2 and 3 of this paper show that fluidized beds are 

unstable when subjected to a small internal disturbance. It is this instability 
which probably gives the linearized description of the manner in which bubbles 
start in beds with R 9 1,  and the manner in which turbulence starts in beds with 
R < O( 10). The expressions (or quadratic equations in w )  for the initial growth 
and velocity of propagation of small disturbances derived in $ 4  provide a means 
of classifying incompressible fluidized systems over a wide range of density ratio 
of the two phases. The expressions for w derived in $9 6, 7 and 8 provide a similar 
means of classification for hot, centrifugal and electromagnetic beds. In  the 
latter the computation would be considerable. 

In  $ 5 a method is given for the treatment of surface waves in fluidized beds. It 
is shown conclusively that these waves are all stable in the case of incompressible 
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beds with R % 1. In  view of the similarity between these beds and the others 
discussed, it is probable that surface waves are stable for all R. The reason for 
the rapid attenuation of surface waves is shown to be a direct consequence of 
a particulate viscous stress tensor. The specific form of this tensor is not actually 
required but the inclusion of a shear and bulk viscosity is essential. The form of 
the tensor is given in (8) and derived in the appendix. 

In  industry gas fluidized beds with R % 1 have been most useful. Approximate 
equations in this case are given by (15) for incompressible beds, (51) for hot beds, 
and the first two equations of (15) together with (89) for centrifugal incompres- 
sible beds. The appropriate combination of the last two will provide approximate 
equations for hot centrifugal beds. 

Although fluidized beds are shown to be unstable there is nothing in the above 
results which can give any conclusive reason as to why bubbles appear in beds 
with R > O( 10) and not in beds, with R < O( 10). -Nan-linear effects will have to 
be included in attempting an answer to this question. In  the case of centrifugal 
beds if the bed is of finite length end effects are very important. These are not 
included in any of the above work. Clearly practical implications of any such 
effects are of importance and interest. 

In  a later paper it will be assumed that a bubble has been formed and the 
resulting bed is stable apart from other bubbles, as observed, and the respective 
motions of the bubble and two phases studied in detail and compared with 
experiment. 

I would like to thank George F. Carrier for the many stimulating discussions 
during the course of this investigation. This work was carried out under a 
National Science Foundation Grant GP 2226. 

Appendix 

viscosity ,us and the bulk viscosity 
Cashwell (1956) and is given below. 

The form of the solids stress tensor as is given by (7). The nature of the shear 
is effectively that suggested by Carrier & 

FIGURE 2. Particle motion for shear viscosity. 

If a particle configuration before and after relative shear motion is as illustrated 
in figure 2 then we approximate to the ratio below as follows: 

Fluid distortion/Particle configuration distortion 

w O({h+u}/h)  = O(1 +a/h). 

Ps = O(P{a/h)) N" O(PD,), We thus get 
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since a/h z O(D,) where D, = Z/Z, - 2. We therefore approximate to p, by 
writing 

where A is a constant, depending on the geometry, of O( 1).  
For the bulk viscosity I& we consider the separation of two cylinders of radius 

a lying close together as shown in figure 3. The fluid motion due to the velocity W 
is taken to  be slow enough so that the induced viscous stresses are important. 
They are, of course, dissipative forces. 

p.5' PAD,, 

FIGURE 3. Diagram for bulk viscosity. 

The radial velocity v, say, is such that 

v cc (h2-x2)/h2 

= wo(h2-x2)/h2, say. 

Conservation gives 

which gives 

At r = a, 

and so conservation is satisfied by 

ma2 2 W = 27rav dx = - $mavo h, Slh 
wo = - $a W/h. 

v = - Qa W(h2 - x2)/h3, 

v = - QrW(h2 - x2)/h3. 

The momentum balance is ap/& = p a2v/ax2, 

and so p(r ,x )  = p(a,x)-p~W(a2-r2)/h3, 

which gives the force P on the particle as p3ma4W/8h3. In  the fluid/particle 
system if the force is considered to be isotropic and W is identified with divv, 
times the distance between the centres we get a stress tensor contribution of the 
form 

& p B ( ~ / h ) ~  (div v,) w SiipBDt div v,, 

where B is a constant depending on the geometry but of O(1). We thus take 

<, = pBD;. 

The p,, above are those used in (7) resulting in (8). In  most fluidized beds 0, 
is large and so the particulate bulk viscosity is large compared with the shear 
viscosity. 
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Partial list of symbols 

A ,  B, C, G constants O(1) 

D = zo/(l-zo) 
D ( 2 )  = paHp,Z( 1 + GD,)/m, modification to Stokes drag, equation (12) 

D, =Z/(Z,-Z) 

9 

H = average [ 6 4  1 + 0.15 Re@657)] 

I = II,-(II,+II,)(z2+2xK3+K7)-02K6(x~K3), in $ 6  

= II.,-(IIl+II,)z2-z02K6, in $ 7  

J = i[IIl(z+K3)+8,K8], in $ 6  

= i[I11z+0,K8], in $ 7  

K = i[IIl(x+K3)+8,(K6-2K8)],  in $ 6  

= i[ l l ,z+0,(K6-2K8)],  in $7 

KI, Kz, K3, K4, K,, K 6 ,  K7, K8, KB, Klo defined by (60) for $ 6  

K4,  K5, &, K, 
L = (I11+III,)-II,(22+2zK3+K7)-02K8(x+K3), in $6 

L,, L, functions of w ,  z defined by ( 3 1 ) ,  (32) 

D S o  = ZO/(Z, - Z,) 
= GDs0(l + Dso)/(l + GQo) 

defined by (92) for $ 7  

= (II,+II,)-II,z2-z02K8, in $ 7  

N = (g/6t$)+ 

p = ( W + P O / V  

R = PSlPf 
U = R D / ( l + R D )  

V = p f ( l  -Z)v, mass flux in $ 6, = - W ,  in $ 7, equation (87) 

W = N + ( C / N ( R -  l ) } ( z - i w N ) ,  equation (41 ) ;  
= rpf(  1 - 2) v, in $ 7, equation (57) 

Y = ( l /RDN) (z  - i o N )  - (O,/D) (z2 - l ) ,  

z = A/&, dimensionless wave number 

Z = nr = dt/dr ,  

a = R,I'/c, Vq(O), equation (54) 

p = Tf(0)  9p(O) aH/mgp(O), equation (54); in $ 8, = vHt/p,Z,v~ 
y = c&,; in $6, equation (54 ) ,  = rg/p(O) 

equation (41) 

fraction of particles in unit volume 

r = ~ ( y , )  = j 'op,zaY 
0 

7 = - i w  
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61 = (4 + C/P) 8 2  

0 2  = (/L263/gP:)4 
Y = Q/(Sg)* in 3 7, equation (92); in 3 8, magnetic permeability 
k = M / r  
n, = D,~(QA +BD:~) e2 
r12 =ADsoe2 

# = T,olTto 
w = 6c/(sg)+ 

X = [paHW/rnpj]+ in § 7 

a = 6T,o/(dTjo/dy)  in 9 6, equation (60); in 3 7, magnitude of rotation 
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